On theta functions for certain quadratic fields
نویسندگان
چکیده
منابع مشابه
Theta functions of quadratic forms over imaginary quadratic fields
is a modular form of weight n/2 on Γ0(N), where N is the level of Q, i.e. NQ−1 is integral and NQ−1 has even diagonal entries. This was proved by Schoeneberg [5] for even n and by Pfetzer [3] for odd n. Shimura [6] uses the Poisson summation formula to generalize their results for arbitrary n and he also computes the theta multiplier explicitly. Stark [8] gives a different proof by converting θ...
متن کاملTheta Functions of Indefinite Quadratic Forms over Real Number Fields
We define theta functions attached to indefinite quadratic forms over real number fields and prove that these theta functions are Hilbert modular forms by regarding them as specializations of symplectic theta functions. The eighth root of unity which arises under modular transformations is determined explicitly.
متن کاملQuadratic Residue Covers for Certain Real Quadratic Fields
Let A„{a, b) = {ban+(a-l)/b)2+4an with n > 1 and ¿>|a-l . If W is a finite set of primes such that for each n > 1 there exists some q £W for which the Legendre symbol {A„{a, b)/q) ^ -1 , we call <£ a quadratic residue cover (QRC) for the quadratic fields K„{a, b) = Q{^jA„{a, b)). It is shown how the existence of a QRC for any a, b can be used to determine lower bounds on the class number of K„{...
متن کاملOn the real quadratic fields with certain continued fraction expansions and fundamental units
The purpose of this paper is to investigate the real quadratic number fields $Q(sqrt{d})$ which contain the specific form of the continued fractions expansions of integral basis element where $dequiv 2,3( mod 4)$ is a square free positive integer. Besides, the present paper deals with determining the fundamental unit$$epsilon _{d}=left(t_d+u_dsqrt{d}right) 2left.right > 1$$and $n_d$ and $m_d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Arithmetica
سال: 1964
ISSN: 0065-1036,1730-6264
DOI: 10.4064/aa-9-1-53-66